
 

 

 
Abstract—We obtain the explicit form of the solutions for an 

initial boundary value problem in a finite layer, which describes the 
dynamics of the Ocean in case of rotating stratified viscous flows. 
We study the asymptotical properties of the solutions. For large 
values of t, we obtain uniform asymptotical decompositions, as well 
as decompositions with respect of the small parameter 1/t on an 
arbitrary compact set in the considered layer of the Ocean. For 
inviscid fluid, we find the spectrum of normal inner waves and 
establish its structure. We construct a Weyl sequence for the essential 
spectrum, which is an explicit representation of non-uniqueness of 
the solution. The localization of the essential spectrum may be used 
for bifurcation points where small nonlinear flows arise. The results 
may be applied in mathematical modeling of fluid dynamics of the 
Atmosphere and the Ocean, particularly, in the construction of stable 
numerical algorithms for the solutions of the studied models. 
 

Keywords—Computational fluid dynamics, Fourier series and 
Fourier transform, spectrum of inner vibrations, stratified fluid, 
turbulence and multiphase flows.  

I. INTRODUCTION, CONSTRUSTION OF WEAK AND STRONG 

SOLUTIONS, THEIR EXISTENCE AND UNIQUENESS 

E consider the following system of differential 
equations in partial derivatives 
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Here  1 2 3, ,v v v v


 is the velocity field of the fluid, ( , )p x t  

is the dynamic pressure,  4 ,v x t  is the dynamic density of the 

fluid,   is the Coriolis parameter which corresponds to the 
rotation of the Earth over the vertical axis, and N is a positive 
constant stratification parameter. For the kinematic viscosity 
coefficient  , we assume 0  . 

The considered equations are deduced in [1]. The study of 
mathematical properties of different systems of fluid dynamics 
of rotating fluid was started in [2]-[4]. Various problems 
involving the spectrum of normal vibrations for stratified and 
rotating fluid were considered in [5]-[9]. For non-linear model 
considered in bounded domains, the solution of similar 
systems was studied in [10]. The system is deduced for the 
cases when the horizontal dimensions are considerably larger 
than vertical dimensions, ([11]) and describes the motion of 
the Ocean flows near the bottom for the cases of rotating Earth 
and exponentially decreasing initial distribution of density due 
to the gravitational force. 
 

We will consider the initial conditions 
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We use the Laplace transform with respect to t, the Fourier 
transform with respect to x  and finite integral transforms 
with respect to 3x . We apply the Cosine-Fourier transform to 

the first, the second and the fourth equations of (1), and the 
Sine-Fourier transform to the rest of the equations. For that 
purpose, we multiply the first, the second and the fourth 
equations by 3cos n x , the rest of the equations we multiply by 

3sin n x  , and integrate with respect to 3x  on the interval 

30 x h  . Let us introduce the following notations: 
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We assume that the initial conditions are sufficiently smooth 

and rapidly decreasing functions for x   , which allows 

us to apply the Fourier transform in x  and Laplace transform 
in t . 

Additionally, we introduce the notations                 
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For the following, we assume  0 4
1  ,  1,2,4,iv W i    
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We also suppose that the condition of consistency of the 
initial data and boundary values is fulfilled.  

It is proved in [12] that the Fourier coefficients of the 
solution are expressed as follows 

 

 
 

   

   

  

2

, 0 2 2 2 0
02

2 0
1 1 2 0 3

0
1 3 0 3

1
ˆ , ,

2

1 1

1  1,2,

i x Ht
k k k n k

R

k k

n k

k

n k k

v x n t e v e v

v

i i U d k

   


    

    

 





     

        
        

  





 
 

   

 
 

   

 

2

2

0 0
2 1 1 2,

3 2 2 0
3 1

, 0 0
2 0 1 12

2 0
0 2 3

1
ˆ , , ,

2

1
ˆ , ,

2

,

ni x

R

i x

R

n

U U
v x n t e d

U

p x n t e U U

U d





 


 

 


  

 

 

    
  
   

     

   





 



 



 
 

   

  
2

2, 0 0
4 4 0 42

0 0
1 1 2 0

1
ˆ , ,

2

,

i x Ht

R

n

v x n t e v e v

N U U d

  


  

       

   

  

 

  
where 

 

   
 

 

0 0 0 0 0 0
1 1 1 2 2 2 1 2 2 1

0 0
3 4

2 2

,  , , ,.

,  ,

.n

U n i v i v U n i v i v

U n Nv

H

     



  

    

 

  

    

   

In this way, the solution of the problem (1)-(3) can be 
represented as follows ([12]):  
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Let us define a strong solution of the problem (1)-(3) as a 

system of the functions  4, ,v p v


 such that 
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satisfy (1) and the conditions (2), (3). 
We define a weak solution of the problem (1)-(3) as a 

system of the functions    4 5, ,v v v V Q


 which satisfy the 

condition (2) and the integral identity 
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for all  0,t  and for every vector function 
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1
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In [12] it is proved that the relations (4) define both weak and 
strong solutions, and that the strong solution is unique in the 
class of functions  V Q .  

Our aim now is to study the velocity of the asymptotical decay 
of the solution for large values of t , and obtain uniform 
estimates of decreasing, as well as asymptotical 
decomposition on an arbitrary compact set in the considered 
layer of the Ocean. 
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II. PROBLEM SOLUTION 

Let us establish first some helpful auxiliary statements. 

Lemma 1 For the initial conditions 2 0
1 2,v v , the 

following relation is valid: 
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For 0
2v , the proof is analogous and thus the Proposition is 

proved. 
   Now, let us consider the integrals of the type     
                                     

 
 

2
2 1

2 2
,

2 2 2
0

cos ,
2

0 , , 1 ,  0, 0, 0.

k
s t
k j sI t e j t d

k j s

      
 

  

 
    

 

    


 

Lemma 2 For t  , the following asymptotical 
decompositions are valid: 
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We use the representation of  
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  as Taylor series 

with the residual term in integral form                   
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and thus obtain the relation (5) for 0 0t t   as follows:                   
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Now, we integrate by parts in the representation of the integral 
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In this way, from (7), (8) we have 
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and, consequently, we obtain the asymptotical decomposition 

for  0
0,0I t , where         
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The decomposition for  0
0,1I t can be obtained analogously. 

Now, let 0 ,  1s k  . We integrate by parts in the integrals 
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1, ,  0,1jI t j   and proceed in the similar way as we did for 

 the case 0k  :              
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Using the last relation, as well as the obtained decompositions 

for  0
0, , 0,1jI t j  , we obtain the asymptotical 

decompositions for the integrals  0
1, , 0,1jI t j  . 

Finally, let 1s  . From (6) we have                            

      21 0
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and thus we obtain the asymptotical decompositions for the 

integrals  1
, , 0 , 1k jI t j k  , which concludes the proof. 

   Now, let us study the integrals of the type       
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Lemma 3 For t  , on an arbitrary compact set 2K R , 
the following asymptotical decompositions are valid:                                     
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as well as the following Bochner formula for Fourier integrals 
([13])                              
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In this way, the Lemma is proved. 
Now we can state our first main result. 

Theorem 1 Let the initial data satisfy  0
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where the residual terms satisfy the estimates for 0 0t t   : 
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the constants ,  i jC C depend on the norms of the initial data 
and the coefficients of the decomposition are continuous with 
respect to x and are expressed only in terms of the initial data.  

Proof. Let us study the component 1( , )v x t  from (4). 

Using the Taylor formula with the residual term in 
integral form, we decompose the Fourier coefficient 

 0
1 ,0v   in a vicinity of the point 0   :                 
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Let us estimate the terms of the series  
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In this way, for  1ˆ , ,v x n t we obtain  the inequality: 
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From (12), (13) we obtain the first statement of the 

Theorem for  1 ,v x t . For the rest of the components of 

the solution, the asymptotic estimates can be obtained 
similarly. 
   Now, let us prove the second part of the Theorem. We 
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We also use (9), (10), and thus obtain the following 
representation for the considered Fourier coefficients:                   
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Let us study the function  1 ,v x t . We decompose the 

function   2
exp 4x y t   according to Taylor 

formula with the residual term in integral form and use 
the estimates (13). 
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From Lemma 1, it follows that the first term in (15) is 
zero. The double integral in (15) can be easily estimated 

by    2 2 2
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   , and thus we obtain the 

required asymptotical decomposition for  1 ,v x t . The 

procedure for the components  2 ,v x t ,  ,p x t  is 
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Proceeding from (4) and making calculations which are 
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From the explicit form of 0 ,j jU  (4), and also from 

Lemma 3, we obtain the required asymptotical 

decomposition for the component  3 ,v x t . Finally, let 

us consider the function  4 ,v x t . Repeating the 
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Once again, we decompose the function 
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(17) according to Taylor formula with the residual term 
in integral form and thus, we obtain the required 
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asymptotical decomposition for the function  4 ,v x t . In 

this way, the Theorem is proved.  

III. THE SPECTRUM OF THE INNER VIBRATIONS 

Now, let us consider the initial system of fluid dynamics for 
the corresponding inviscid fluid
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in the same layer domain   with the same boundary 
conditions (3).  
Let us consider the  problem of normal vibrations          
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Let us define the domain of the differential operator M with 
the boundary condition (3) as follows. 
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The consideration of the separated variables of the form (19) 
allows to consider every non-stationary process as a linear 
superposition of the normal oscillations. The spectrum of 
normal vibrations may be used for studying the properties of 
the stability of the flows. As well, the spectral properties of 
M  may be used in the investigation of weakly non-linear 

flows, since the bifurcation points are exactly the points of the 
spectrum of the operator M . 

Let us denote by  ess M  the essential spectrum of a closed 

linear operator M. We recall that, according to the definition of 
the essential spectrum [16], 

    1
:  is not of Fredholm type ,ess M C M I     

 
it consists of the points of the continuous spectrum, 
eigenvalues of infinite multiplicity, and limit points of the 
point spectrum. 
Therefore, the spectral points outside of the essential 
spectrum, are eigenvalues of finite multiplicity. For 
calculating the essential spectrum of M, we would like to use 
the property  which is attributed to Weyl [16], [17]: a 
necessary and sufficient condition for an imaginary finite 
value   to be a point of the essential spectrum of a skew-
selfadjoint operator M is that there exist a sequence of 

elements  nv D M  such that 

 1, 0 weakly, and  0.n n nv v M I v      

Evidently, the operator M is skew-selfadjoint and its spectrum 
belongs to the imaginary axis. 
Theorem 2 Let    min ,  ,  max ,b N B N   . Then, the 

essential spectrum of M is the symmetrical set of the 

imaginary axis:        , 0 , .ess M iB ib ib iB     
 

 Proof.  For the operator L we observe that its main symbol 

 L   is represented by 
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and thus  

       
      2 2 2 2 2 2 2

1 2 3det L N             
 .  

In this way we can see that if the spectral parameter   does 

not belong to      , 0 ,iB ib ib iB    , then the operator L 

is elliptic in sense of Douglis-Nirenberg.  

Now, we consider    0 , \ 0ib iB  and choose a vector 

0   such that     2 2 2 2 2 2 2
0 1 2 0 3 0N          . 

Therefore, there exists the vector   such that   0.L     

After solving the obtained system with respect to  , we can 

represent one of the solutions in the form: 
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Let us observe that 0i   for all i .  We choose a function   
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x

C x dx 
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Let us fix 0x   and put  

                      3
2

0 0  , 1,2,...k x k k x x k      

Now, we can define the Weyl sequence as follows:  

3 3
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5 1 1 2 2 3 3
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It is easy to see that the above sequence satisfies the Weyl 
conditions. 
Since the essential spectrum of a linear operator is always a 
closed set, the points 

     0 , ,ib iB   , also belong to it and thus the Theorem is 

proved. 

IV. CONCLUSION 

The explicit form of the solution of three-dimensional rotating 
stratified flows in the Ocean, as well as the obtained exact 
estimates of vanishing of the amplitude for large values of t 
can be used directly for numerical calculations and 
programming. The constructed Weyl sequence is an explicit 
example of non-unique solutions for the case when the 
frequency of internal vibrations belongs to the spectrum. Since 
the bifurcation points belong to the essential spectrum, it can 
be used for investigation of the small nonlinear solutions. The 
practical case of a layer in the Ocean suggests that the 
obtained results may find their applications in nonlinear 
dynamic modeling, computational fluid dynamics and weather 
forecasting, since the obtained results are also valid for the 
Atmosphere.  
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